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(Received September 1. 1976) 

By a mathematical analysis of the formulae of a quasi-crystalline model of liquids, i.e. a crystal 
lattice with smeared out lattice sites, it is shown that this model leads to a nonphysical 
asymptotic behaviour of the radial distribution function. To remove this defect it is neces- 
sary to modify the initial lattice by changing either the coordination numbers or the radii 
of the coordination spheres. Some ways of such modification are given and illustrated by 
concrete calculations. 

1 INTRODUCTION 

One of the best known ways to interpret the radial distribution function 
(RDF) of liquids obtained in experiments on X-ray or neutron diffraction is 
perhaps their comparison with RDF for suitable crystal lattices whose sit,es 
are smeared out by a certain law. Most often the formalism is used in which 
the molecular location in a latticesite is given by the Gaussian distribution. 
Such a model for description of the liquid structure was first proposed by 
Prins and thus it is reasonable to call it the Prins quasi-crystalline model. 
Though the physical meaning of the Prins model is quite clear2, there is no 
adequate mathematical formulation of the model up to date. So, a correct 

137 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
5
9
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



138 N. N. MEDVEDEV AND YU. I. NABERUKHIN 

form of the RDF in this model has been found just 

Here R, and Ni are the radii and coordination numbers of the lattice to be 
smeared out, and ui is the dispersion of the Gaussian distribution for i-th 
coordination sphere. Formula (1) implies that it is the function G(R)/R that 
can be represented by a series of Gaussian distributions whereas in most of 
works either RDF itself, G(R), (e.g., in5-’) or the Rair correlation function 
g(R) = G(R)/4npR2 (e.g., in I )  are decomposed into Gaussians for intuitive 
reasons. 

In the simplest variant of the mode1 R, and Ni are chosen equal to the 
radii and coordination numbers of the successive spheres of a real crystalline 
lattice and the so called structural diffusion law is used for dispersion 

uf = PR,  (2) 
According to Frenke12 the constant p/2 is designated the coefficient of 
structural diffusion. Law (2) can be justified for large distances Ri between 
the molecules when particle distributions around the corresponding points 
of the lattice are independent.2 In the neighbouring coordination spheres, 
however, the molecular distributions are statistically dependent of necessity 
and thus both law(2) and the assumption of the Gaussian shape of the dis- 
tribution become inc0rrect.~~*3 These conclusions have been corroborated 
by recent investigation showing that to fit quantitatively experiment one 
should deviate from a simple formulation of the modeL9J0 

In the present work we draw attention to another imperfection of the 
quasi-crystalline model. It turned out that in the simplest variant of the Prins 
model the differential RDF defined as 

H(R) = G(R) - 4 n p R 2  

( p is the average density of the liquid) rises monotonously with increasing R 
but does not approach zero as one has to expect on physical grounds. We 
analyze below the origin of the defect above and propose some ways of its 
elimination. 

(3 ) 

2 ASYMPTOTIC BEHAVIOUR OF THE RADIAL 
DISTRIBUTION FUNCTION IN THE PRlNS MODEL 

Let us find the asymptotic behaviour of the RDF defined by equation (1). 
For large R the second exponent in (1) can be always omitted and summa- 
tion over the spheres can be replaced by integration with respect to radius 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
5
9
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



ASYMPTOTIC BEHAVIOUR OF THE RADIAL DISTRIBUTION FUNCTION 139 

when introducing the radial distribution function of the crystal lattice 
Gc(R). Thus G,(R')dR' gives the number of particles of the initial lattice 
in an interval dR' at a distance R' from the origin of coordinates. As a result 
we obtain 

instead of (1). At large R for any homogeneous crystal one should assume 

Gc(R) = 4npcRZ ( 5 )  

where pc is the average density of the crystal used. Using ( 5 )  and structural 
diffusion law (2), equation (4) can be written as 

The lower limit of integration is assumed to be zero in spite of incorrectness 
of relation ( 5 )  at small R. This can be done since the integration over the 
region where I R - R'( is large (when (R - R')Z >> 2/3R') gives a negligible 
contribution to the integral due to the exponent in the integrand. Thus, if 
R is large enough the form of the function G,(R') at small R'is unimportant. 

G(R) - 4npc(R2 + PR). 

The integration in (6)  can be performed analytically to give 

(7) 

Consequently the function H (R) has asymptotic behaviour 

H(R) - 47cpCPR. (8) 
However, for a homogeneous liquid (or crystal) the function H(R) must 
approach zero because at large distances the local density coincides with 
the average one. Hence the asymptotic form (8) of the RDF in the Prins 
model turns out to be nonphysical. 

To illustrate this conclusion we obtained RDF by the direct calculation 
according to formula (1) for two types of crystal lattices. The results which 
are shown in Figure 1 are in full agreement with equation (8). A monotonic 
increase of the central line for the function H(R) in the Prins model has 
been observed also by Franchetti'l. He did not attribute, however, this 
defect to be inherent of the model. 

The origin of the additional term in the radial distribution function 
asymptote (7) may be elucidate as follows. Since smearing dispersion of the 
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FIGURE 1 Differential RDF calculated according to formula (1). Curves 1 and 2 cor- 
respond to p = 0.06 and 0.12. Curve 3 is simily to curve 2 butoall the latticecoordination 
numbers were multiplied by pI Ipc .  p1 = 0.0528 A -3, R ,  = 2.85 A. 
a) The initial lattice of body-centered cubic type. pc = 0.0561 A -3. 

b) The initial lattice of face-centered cubic type. pc = 0.061 1 A -I. 

coordination spheres increases with increasing the sphere radius (according 
to law (2)), the number of particles which enter into a given coordination 
sphere from the sphere of the larger radius will be greater than the number 
of particles which leave this sphere. It is such a character af the particle 
redistribution that results in a nonphysical increase in the local density as 
compared with the average one. A correct asymptote can be obtained only 
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ASYMPTOTIC BEHAVIOUR OF THE RADIAL DISTRIBUTION FUNCTION 141 

at the constant dispersions for all the spheres independently of their radius 
( p  = 0). But this situation, being typical of a perfect crystal, cannot cor- 
respond to a real liquid where the structural diffusion law (2)is undoubtedly 
valid asymptotically.’ 2 

It should be noted that one might fail to observe this defect of the Bins 
model if an asymptotic behaviour of the pair correlation function g(R) is 
investigated. Indeed, according to (7) we have 

i.e. the model gives a correct asymptote for g(R). 

3 CORRECTION OF THE ASYMPTOTIC BEHAVIOUR OF THE 
RADIAL Dl STR I B UTI ON F U NCTl ON 

To improve the RDF asymptotic behaviour it is necessary to correct the 
quasi-crystalline model by modification of its basic assumptions. This can 
be done in different ways: a) by removing some particles from the sites of the 
initial crystal lattice and by changing the radii of the coordination spheres; 
b) by substitution of the Gaussian distribution by some other one; c) by 
rejection the structural diffusion law. We will discuss here only the first 
way, modification of the initial crystal lattice, since the others lead to un- 
necessary complications of the model.’$ It is reasonable especially as the 
Gaussian type of distribution and the structural diffusion law appear always 
to be valid for liquids at large R. 

It is shown in Appendix that the correct form of the RDF asymptote in the 
quasi-crystalline model of liquids is possible only in the case when the RDF 
of the initial crystal lattice has the asymptote 

G,(R) - 4zp(RZ - PR). 
The simplest way to obtain the structure satisfying condition (9)is to change 
the lattice coordination numbers according to the law 

(9) 

leaving unchanged the coordination sphere radii, Ri = RP. Here the index 
“0” denotes that the corresponding value belongs to the initial crystal lattice 
with the average density pc. p ,  is the average density of the liquid the RDF 
of which has to be built. Indeed, by the definition, the initial lattice RDF is 

GJR) = lim Z N~/AR. 
AR-0  AR(R) 
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142 N. N. MEDVEDEV AND YU. I. NABERUKHIN 

The sign Z means summation over the coordination spheres which lie 
in an interval AR at a distance R from the origin of coordinates. Substituting 
transformation (10) into (1 l) ,  we get 

A R W )  

m -(1 - P/R,)N;/AR = Gc(R) = lim 
AR-.o A R ( R )  Pc 

P c  

Since the RDF of the crystal lattice at large R is 4npcR2 it follows from 
(1 2) that 

Gc(R) - fi 1 - 4zpcR2 = 47th (R2 - PR). (13) 

Thus, transformation (10) really leads to a lattice with the necessary 
asymptote of the RDF. 

The factor p,Ipc in (10) serves to make the calculated RDFcorrespond 
to liquid with the real density p, differing from that of the initial crystal, 
pc. Note that a simple multiplication of all the lattice coordination numbers 
by the same factor pIIpc evidently cannot improve the RDF asymptote 
(see Figure 1). 

In Figure 2 the functions H(R) are plotted calculated on the basis of the 
quasi-crystalline model under the same parameters as for the functions 
in Figure 1, but with the modification of the coordination numbers of the 
initial lattice according tolaw (10). Now the functions H (R)oscillate around 
zero, i.e. have a correct asymptotic behaviour. 

Changing only the coordination numbers is rather a particular case of 
the crystal lattice modification. Such a modification results, in fact, in no 
shift of the RDF maxima. However, the experience of fitting the calculations 
to experimental data shows that maxima of the calculated RDF are often 
shifted systematically with respect to those of the experimental functions 
(see Figure 2). Therefore, for a better fitting one has to change in the model 
the coordination sphere radii too (see, e.g.,'OJl). 

In principle, it is possible to accept arbitrary laws for changes in the 
coordination sphere radii, 

Pc ( R )  

R, = f(&o), i = 1,2,. . . . , 03, (14) 

Ni = p(K)Np. (1 5) 

and the coordination numbers, 

It is necessary only to demand they to ensure a correct asymptotic behaviour 
of the RDF. This means that between f(R) and q(R) a dependence must 
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FIGURE 2 Differential RDF calculated according to formula (1) with transformation 
of the coordination numbers by law (10). For curves 1 and 2 p = 0.06 and 0.12respectively. 
The dotted line is the exptrimental function H(R) for liquid aluminium12 at the temperature 
670°C and p, = 0.0528 A -3. The other parameters are the same as in Figure 1. 
a) The body-centered cubic lattice. 
b) The hexagonal close packing. 
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exist which can be obtained as follows. Let us count the number of particles 
in a layer AR(R) of the lattice distorted in accordance with the laws (14) 
and (15): 

2 N, = 2 q(Ri)NP = ~ ( R I  2 N P .  
A R ( R )  A R ( R )  A W R )  

But the number of sites of the distorted lattice in  an interval AR(R)is equal 
to the number of sites of the initial lattice in a corresponding interval 

ARo(Ro) = - df-'(R) AR(R) where RP = f-'(R,) is an inverse to (14)trans- 

formation. Therefore at large distances from the origin of coordinates the 
relation 

dR 

is valid. Using (1 1) and (9), we obtain the dependence to be found 

PI R : - P R ,  d R , )  = - 
pc [f-'(R,)]' df-'(Ri)/dR,' 

Transformation (10) is evidently a particular case of this equation when 
R,' = f- '(R,) = R,. 

The linear transformation 

R, = KRP + A (17) 
is the simplest law of changjng the radii of the coordination spheres. 
Together with (16) it gives 

Here K is the constant dilatation coefficient of the lattice, and A is a constant 
which may be expressed via the radius of the first coordination sphere of the 
lattice, R, .  In the case of simple liquids the first sphere radius is known to 
be practically invariable at melting. Therefore transformation (17) must 
leave the first coordination sphere radius invariable what leads to the 
relation for the constant A: 

A = ( 1  - K)RY. (19) 

On the other hand, the nonlinear lattice dilatation by the laws 

R, = RP(1 - CRY), Ni  = (1 + 2cR;)'NP, 

postulated by Franchetti" surely does not satisfy condition (16) and thus 
leads to an incorrect RDF asymptote. 
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ASYMPTOTIC BEHAVIOUR OF THE RADIAL DISTRIBUTION FUNCTION 

4 COMPARISON WITH EXPERIMENT 

To illustrate the possibilities of the modified quasi-crystalline model we 
applied the formalism of the linear lattice distortion described by formulae 
(17), (18), and (19) to reconstruction of the radial distribution function of 
liquid aluminium. We chose aluminium as its experimental RDF contains 
the greatest number of oscillations among all data compilated in. Figure 3 
gives a comparison of the calculations with the experiment. First of all we 
see that the model does not allow one to describe simultaneously both the 
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0 c) 

A 

L 

I f2 6 -R[Al 2 4 

FIGURE 3 Comparison of the functions H(R) calculated according to (1) with modification 
of the lattice by formulae (17). (18) and (19) with experiment. R,  = 2.85 i, p ,  = 0.0528 
a) The body-centered cubic lattice. 
p = 0.07. For the solid line K = 1,  for the dotted one K = 0.98. 
b) The hexagonal close packing. 
For the solid line K = 1 ,  p = 0.05. For the dotted one K = 1.07, p = 0.06. 
c) The face-centered cubic lattice. p = 0.046. 
For the solid curve K = I ,  for the dotted one K = 0.96. 

first and the following maxima of the RDF. This fact, established before on 
the basis of the nonmodified Prins model,9 means that the dispersion of the 
first coordination sphere does not follow the structural diffusion law due 
to correlation of motions of the neighbouring particles. Therefore we shall 
further pay attention only on the second and the following maxima of the 
RDF. 

Figure 3a shows that the body-centered cubic lattice well describes the 
H(R) of liquid aluminium practically without any distortion in the sphere 
radii (K = I). A more complicated situation is observed for the hexagonal 
close packing. Here the good fitting can be obtained only after dilatatior 
of the lattice, K = 1.07 (Fig.3b). At last, for the face-centered cubic lattice 
it is impossible to choose such K and p parameters which would allow us t c  
fit all the maxima of the function H (R) to experiment (Fig.3~). 

5 CONCLUSION 

It goes without saying that the model intended to describe liquids musl 
satisfy some general requirements characterizing the essence of the liquic 
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ASYMPTOTIC BEHAVIOUR OF THE RADIAL DISTRIBUTION FUNCTION 147 

state. The asymptotic behaviour of the differential radial distribution 
function, H(R) - 0, is the most general requirement of that kind. From 
the present w6rkRT;follows that the simplest variant of the f i n s  model does 
not satisfy this requirement and thus cannot be considered appropriate for 
description of liquids. However, this defect of the model is easily removed 
if the initial crystal lattice is distorted in a certain way, e.g., by law (17) 
and (1 8). In this work we do not discuss the meaning of the modified lattice 
with an unusual asymptote (9) of its RDF. We consider the quasi-crystalline 
model only as an algorithm for description of the liquid structure. In this 
algorithm the final structure but not intermediate constructions must have 
a physical content. 

Appendix 

The RDF of the modified lattice might be given in general case in the 
form 

a2 

R 
G,(R) = 4np(R2 + a,R + a ,  + - + . . . an+, 

R "  
+- + .. 

The only limitation we assume here for G,(R)is that thelatter must increase 
not faster than R2. Substituting (Al) into (4) and using (2), we get 

+ ...) 4 n p R  a0 a, an +. . .+-  
6 x 6  X S 6  

= 4npR[f- , (R)  + a,f,(R) + . . . + a,f,(R) + . . .] (A2) 
where 

(R - x)' 

It is easy to show that f -, (R) = R + /3, f, (R) = 1 and that the recurrent rela- 
tion Rf,+,(R) = f,(R) - /3(df,/dR) is valid. On that ground at n 2 1 all 
the f, are homogeneous polynoms of 1/R with positive coefficients. There- 
fore (A2) may give the asymptote for liquid of the form G(R) = 4 n p  R2 only 

obtain (9). 
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